Experimental computation with oscillatory integrals
نویسندگان
چکیده
Abstract A previous study by one of the present authors, together with D. Borwein and I. Leonard [8], studied the asymptotic behavior of the p-norm of the sinc function: sinc(x) = (sin x)/x and along the way looked at closed forms for integer values of p. In this study we address these integrals with the tools of experimental mathematics, namely by computing their numerical values to high precision, both as a challenge in itself, and also in an attempt to recognize the numerical values as closed-form constants. With this approach, we are able to reproduce several of the results of [8] and to find new results, both numeric and analytic, that go beyond the previous study.
منابع مشابه
Efficient computation of highly oscillatory integrals with Hankel kernel
In this paper, we consider the evaluation of two kinds of oscillatory integrals with a Hankel function as kernel. We first rewrite these integrals as the integrals of Fourier-type. By analytic continuation, these Fourier-type integrals can be transformed into the integrals on [0, + ), the integrands of which are not oscillatory, and decay exponentially fast. Consequently, the transformed integr...
متن کاملFast, numerically stable computation of oscillatory integrals with stationary points
We present a numerically stable way to compute oscillatory integrals of the form ∫ 1 −1 f(x)e iωg(x) dx. For each additional frequency, only a small, well-conditioned linear system with a Hessenberg matrix must be solved, and the amount of work needed decreases as the frequency increases. Moreover, we can modify the method for computing oscillatory integrals with stationary points. This is the ...
متن کاملOn Quadrature Methods for Highly Oscillatory Integrals and Their Implementation
The main theme of this paper is the construction of efficient, reliable and affordable error bounds for two families of quadrature methods for highly oscillatory integrals. We demonstrate, using asymptotic expansions, that the error can be bounded very precisely indeed at the cost of few extra derivative evaluations. Moreover, in place of derivatives it is possible to use finite difference appr...
متن کاملTWO LOW-ORDER METHODS FOR THE NUMERICAL EVALUATION OF CAUCHY PRINCIPAL VSlLUE INTEGRALS OF OSCILLATORY KIND
In this paper, we develop two piecewise polynomial methods for the numerical evaluation of Cauchy Principal Value integrals of oscillatory kind. The two piecewisepolynomial quadratures are compact, easy to implement, and are numerically stable. Two numerical examples are presented to illustrate the two rules developed, The convergence of the two schemes is proved and some error bounds obtai...
متن کاملComputing Integrals of Highly Oscillatory Special Functions Using Complex Integration Methods and Gaussian Quadratures
An account on computation of integrals of highly oscillatory functions based on the so-called complex integration methods is presented. Beside the basic idea of this approach some applications in computation of Fourier and Bessel transformations are given. Also, Gaussian quadrature formulas with a modified Hermite weight are considered, including some numerical examples.
متن کامل